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Abstract. The Maxwell-Wagner and the Bruggeman Symmetric and Asymmetric Media equations are

introduced and the well de®ned microstructures for which these effective media equations apply are emphasized.

The microstructures characterising percolation systems and the resultant critical volume fractions are then

discussed. After this the concept of scaling, the percolation expressions and a new two exponent analytical

phenomenological equation are introduced and their interrelationship is examined.

The information obtainable from dc measurements is investigated and then simulations of impedance and

modular spectra obtained from the effective media equations are given and the implications of these results

discussed. Followed this, results for the complex ac conductivity of a nearly ideal continuum systems are given and

it is shown that the conductivity above and the dielectric term below the critical volume fraction can be scaled onto

analytical curves, using parameters obtained from dc conductivity measurements. Lastly simulations of the type of

impedance spectra and dispersion relations that might be observed for systems with a percolation microstructure

but non ideal insulating and conducting components are given and discussed.
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I. Introduction

Quantitative models, or even semi quantitative ones,

for the complex conductivity (dielectric constant) of

electroceramics (or composites) can be used to not

only understand their properties and hopefully design

new or better electroceramics, but can also be used to

determine the electrical properties of the components

and to gauge the microstructure from electrical

measurements of these materials. In this paper we

present two classes of models for binary systems,

although with some ingenuity, these can often be

applied to three or more component systems. The ®rst

are the effective media equations, where the only

parameters are the conductivities of the components,

as the microstructures are well de®ned. The second

are the percolation equations and the related one and

two exponent phenomelogical equations, henceforth

referred to as the GEM equations, both of which need

an additional two or three parameters to characterize

the microstructure or distribution and interconnec-

tivity of the components. Unfortunately, one cannot,

as yet, use these equations to design and characterize

all electroceramics in a quantitative way, but an

understanding of these equations, and the micro-

structures to which they apply, is necessary to

understand the conductivity of composite electro-

ceramics, even in a semi quantitative way.

Effective media theories from Maxwell to

Maxwell-Wagner (MW) and on to the Bruggeman

Symmetric Media (BS) and Asymmetric Media (BA)

equations and percolation theories are reviewed, up

until 1979, by Landauer [1]. McLachlan [2], also

discussed these topics and the one exponent General

Effective Media (GEM) equation. Percolation theory

is made accessible in the introductory book by



Stauffer and Ahorony [3], a wide range of percolation

topics is presented in reference [4] and the electrical

properties of inhomogeneous media are reviewed by

Bergman and Stroud [5], Nan [6] and Clerc et al. [7].

Emphasis in this article will be placed on isotropic

media. For an in depth discussion and derivation of the

equations, and more on anisotropic media, the reader

is referred to the above review articles [1±7], and the

references therein. Due space constraints the author

will, where possible, refer to the review articles only.

The ®rst section on theory will present the effective

media equations and their microstructures, the one

thereafter will discuss percolation microstructures and

this will be followed by a section on scaling and the

percolation equations. These are followed by sections

giving experimental results and computer simulations

for effective media and percolation systems.

II. Effective Media Theories

The various binary phase effective media, which have

a conductivity sm (resistivity rm � 1=sm), discussed

will all consist of two components, the highly

conducting one with a conductivity of sh (resistivity

r` � 1=sh) and a more insulating one characterized

by s`�1=s` � rh�. In principle, in all equations, one

can substitute the appropriate complex dielectric

constant �e� � er � iei�, complex conductivity

�s� � sr � isi� or complex permeability

�m� � mr � imi� for the equivalent sm, sh or s`. The

volume fraction of the more conductive component is

given by f and the less by f � 1ÿ f. Note that in the

BS, GEM and percolation equations there are also the

``microstructure'' parameters, fc (the percolation

threshold) and the exponents (s and t).
The ®rst effective media for spherical inclusions

equations were due to Maxwell. For dilute dispersions

of spheres in a host matrix (valid for f and f � 0.1

[8]), these are

sm� f � � sh�1ÿ 3=2f � �1a�
rm�f� � rh�1ÿ 3f�: �1b�

Equation (1a) is valid when s` � 0 and Eq. (1b) when

r` � 0 for the dispersed component. Expressions

where 05s`5sh5? and for anisotropic media, are

given in Meredith and Tobias [8]. All valid effective

media theories must reduce to these expressions in the

dilute limit.

The well known Maxwell-Wagner relationships for

spherical inclusions or grains are,

sm ÿ sh

sm � 2sh

� f
s` ÿ sh

s` � 2sh

�2a�

sm ÿ s`
sm � 2s`

� f
sh ÿ s`
sh � 2s`

�2b�

The expressions are often written in terms of em; e` and

eh and called the Claussius-Mossetti relationships.

The MW media can be visualized as built up out of a

space-®lling array of coated spheres, as illustrated in

Fig. 1b(i) for Eq. (2a) and Fig. 1b(ii) for Eq. (2b). The

coating component forms the host or matrix compo-

nent (sh in Eq. 2a and s` in

Eq. (2b)) therefore, as the coatings on the spheres

persist until f or f � 1, there is no percolation

threshold (f � 0 or 1 is not a percolation threshold,

as the medium then consists of a single component).

The Maxwell-Wagner equations are equivalent to the

Hashin-Shtrikman (HS) [2,5] upper and lower bounds

for the conductivity (resistivity) of an isotropic two

component mixture. The microstructures described by

the MW and HS equations are also the same. These

equations are plotted in curves a and e in Fig. 2.

Bruggeman asymmetric media equations, for

spherical inclusions or grains, are [1,8],

sm ÿ s`� �3
sm

� �1ÿ f �
3 sh ÿ s`� �3

sh

�3a�

sm ÿ sh� �3
sm

� �1ÿ f�
3 s` ÿ sh� �3

s`
�3b�

The building ``blocks'' for the media described by

Eq. (3a) are illustrated in column c(i) of Fig. 1 and

for Eq. (3b) in column c(ii). Again this requires a

very large range of the building block or sphere

sizes and a speci®c host or matrix component and

there is no percolation threshold. Equations (3a) and

(b) are plotted in Fig. 2 as b and d and are derived in

Landauer [1] and [8]. Ellipsoidal grains or building

blocks are discussed in Meredith and Tobias [8].

Bruggeman's symmetric media equation (BS) for

an isotropic media, which is built up out of a very

large range of the conducting and insulating spheres,

as shown in column a of Fig. 1, is

f�sh ÿ sm�=�sh � Asm� � �1ÿ f�
�s` ÿ sm�=�s` � Asm� � 0 �4�
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A depends on the demagnetization coef®cient of the

ellipsoids building up the media [8] and is 2 for

spheres. The randomly arranged space-®lling spheres,

shown in columns a(i) and a(ii) of Fig. 1, are randomly

assigned to be conducting or non-conducting, so that a

fraction f of them have the higher conductivity

(therefore 17f or f of the spheres have the lower

conductivity). Reference [8], and the references

therein, give alternate expression for A. In general A
is determined by the demagnetization coef®cients of

the ellipsoids making up the media and gives fc, as A
can always be written as �1ÿ fc�=fc, even when the

media are made up out of oriented or randomly

oriented ellipsoids. Equation (4) is plotted as curve c

in Fig. 2.

Equations (2a) and (3a) reduce to Eq. (1a) when f is

small and s` � 0. Equations (2b) and (3b) reduce to

Eq. (1b) when f is small and sh �? or r` � 0, the

equations being rewritten in terms of rm, r` and rh to

avoid the in®nities. However, Eq. (4) reduces to

Eq. (1a) for all f �1ÿ f� if s` � 0 and to Eq. (1b), for

all f when Eq. (4) is rewritten in terms of rm; r` and

rh with sh �? or r` � 0. Therefore Eq. (4) predicts

a metal-insulator �sm � 0� transition (MIT) when

f � fc � 2=3�f � 1=3� and s` � 0 and a perfect

conductor-normal �rm � 0� transition (PNT) when

f � fc � 1=3. This behavior of sm�rm� is also

observed at an ideal percolation threshold.

Therefore, the microstructure characterized by the

BS theory leads to a percolation type behavior.

Equation (4) is plotted as curve c in Fig. 2 for

A � 2�fc � 1=3�.
Figure 2 shows that the resistivity of media

described by Eqs. (2a) and (2e) and Eqs. (3b) and

(3d) is dominated by the host or matrix material until f
or f approaches 1. However, if there is a percolation

type transition, as illustrated by Eq. (4) (curve c in

Fig. 2), the properties of the medium rapidly change

from being dominated by one component to the other

near fc (or fc), where 05fc; fc51.

An effective medium is one in which each sphere

(ellipsoid) is surrounded by a mixture of the two

components that has the mean or effective value for

the medium. This requires that the spheres (ellipsoids)

have an effectively in®nite range in size, and that the

larger spheres are separated by material containing

smaller spheres. The more usual type of percolation

system, where spheres (ellipsoids, grains) of similar

size come, or nearly come into contact with each other

are not effective media. In practice effective media

theories work best for lower values of f or f, where

the spheres (ellipsoids) are further apart.

Fig. 1. This ®gure illustrates the building blocks for the microstructures which are characterized by (a. i and ii) the Bruggeman's

Symmetric Media Equation (Eq. (4)), (b. i and ii) the Maxwell-Wagner equation (Eqs. (2a) and (b)) and (c. i and ii) Bruggeman's

Asymmetric Media equations (Eqs. (3a) and (b)). Note that these media require a very large range in the size of the spheres and that

spheres of similar size be well separated.
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III. The Critical Volume Fraction in
Percolation Systems

The percolation equations are obeyed by computer

simulations where conducting bonds and sites

(connected to all nearest neighbors) are placed at

random on a 2 or 3 dimensional Bravais lattice

[2,5,6,9]. The fraction of occupied bonds or sites

necessary to produce a conducting path through all

lattice types is well known [2,9]. If conducting

spheres, of just suf®cient size to touch their nearest

neighbors, are placed at random on the sites of a 3d

lattice, it is found that at the percolation threshold the

volume fraction, occupied by the spheres, fc is at

0.16+ 0.02 [2,9]. If metal ball bearings and glass

beads of equal size are placed in a large container it is

found that at fc the volume fraction of the ball

bearings is also close to 0.16 [2,9]. In continuum (two

component) percolation theory, a fc close to 0.16 is

now taken to characterize a random media, but other

values of fc are also permitted.

In both lattice and continuum cases, the theory

predicts that just below the percolation threshold the

bonds, sites or conducting grains lie mainly in large

clusters with mean diameters x&ao=jfÿ fcjv. At

jfÿ fcj � 0 the largest cluster becomes in®nite and

leads to a dc conduction or percolation path through

the sample. Here x is the coherence length, ao is the

mean grain size, and � a critical index 0.85 in 3d

[3,5,9].

For fc less than 0.16, two models can be

considered. The ®rst is the grain consolidation

model [2] illustrated in Fig. 6 of McLachlan [10]

and Fig. 3 of Roberts and Schwartz [11]. The starting

two phase composite and the conducting two phase

composites, remaining after the pure insulating

phase has started to grow (from out of the above

two phase composites), is treated as a single

composite phase (black in Fig. 3). The second phase

is the monophase insulating ``spheres'' (white in

Fig. 3). The model for fc starts with the nucleation of

a random array of small insulating spheres embedded

in the two phase composite (Fig. 3a). The insulating

spheres then grow to form a random-close packed

lattice with point contacts on the surfaces (Fig. 3b). As

the radii of the insulating spheres increase further, the

Fig. 2. Resistivity bounds for a two component media as a function of volume fraction. One component has a resistivity rh � 3:336
109 Om �s` � 3610ÿ8� and the other r` � 3:336106 O m �sh � 3610ÿ5�. The curves are the Maxwell-Wagner equations (Eqs. (3a) and

(b)) or the Hashin-Shtrikman upper and lower bounds (a) and (e), the Bruggeman Asymetric Eqs. (Eqs. (4a) and (b)) (b) and (d), and the

Bruggeman Symmetric Equation (Eq. (5)) (c).
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areas of interfacial contacts grow, creating an ever

decreasing volume of pores and throats, which

contains the remaining two phase mixture (Fig.

3(c)). Finally, when the volume fraction � f � of the

insulating spheres is about 0.97 (Fig. 3(d)), the throats

no longer form a percolation path [11]. This would

give a fc of approximately 0.03, if the material

remaining in the pores and throats is the pure

conducting phase. An even lower fc would be

obtained if the insulating ``spheres'' stopped growing

for f of about 0.97, leaving a conducting two phase

composite in the just percolating pores and throats.

For a medium where the radius of the insulating

particles is very much larger than that of the

conducting particles, the value of fc for RI=RC

(radius insulating sphere/radius conducting sphere)

was ®rst calculated on the basis that each non-

conducting grain is covered with a monolayer of

conducting particles at fc. Later it was realized that

the conducting particles did not have to cover the

insulating particles completely, but had only to form a

percolation path [12]. In this case a two dimensional

percolating network is formed at a fc, which is about

one-half [9] of that needed for the completely covered

insulating particle model. It was also realized [12] that

the conducting particles are not only on the surface of

the insulating grains, but also trapped in the interstitial

sites or pores, which increases the observed value of

fc. Both theoretical minimum and practical minimum

values of fc for each value of are given in [12]. A

practical minimum for RI=RC is 30, which gives, after

making allowance for the conducting phase trapped in

the pores, a fc of about 0.03.

Still another method of achieving a very low fc

is to use ®ller particles with an elongated geometry

or high demagnetization coef®cient (rods or discs)

[13]. This has been done by Carmona and co-

workers [14] who studied the difference in the fc

obtained for a carbon powder and for randomly

oriented carbon ®bers, with various length-to-cross-

section ratios, bonded in epoxies and silicon

elastomers.

Fig. 3. Computer-synthesized cross sections of a sample of material produced by consolidating a distribution of spherical grains. The thin

straight lines along the grain-to-grain contacts have been included for clarity. The illustrated stages are (a) f � 0:346, (b) f � 0:200, (c)

f � 0:100, where the ®rst occluded volumes of conductor have begun to develop, and (d) f � 0:030, near the percolation threshold. The

insulating spheres (white) grow out of the conducting diphasic medium (black).
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To have fc larger than 0.16 one must visualize a

medium where all the grains (sites in lattice theories)

do no form electrical contacts (bonds in lattice

theories) with their nearest neighbors. (Recall that if

all the neighboring grains, of roughly equally size,

are electrically connected, fc is about 0.16.)

However, if some of the nearest-neighbor con-

ducting grains fail to make electrical contact (in

practice, often due to the insulating component

tending to but not completely wetting and covering

the grains), the critical volume fraction would rise

above 0.16. This is a site-bond percolation situation

in lattice theory [4]. Note that the volume fraction

for space ®lling and touching spheres on a regular

closely packed lattice, or placed at random (Fig. 3(b)

with the conducting grains black), lies between 0.52

(simple cubic) and 0.74 (face centered cubic) [9].

Therefore this range can be visualized as an upper

limit for fc in a mixture, when the insulating phase

does not completely wet and or cover the conducting

grains.

IV. Scaling and the Percolation Equations

Good percolation systems are characterized by a

smooth and rapid change of the dc electrical

conductivity in a narrow range of conductor

volume fractions. It has been well established,

both experimentally and theoretically, that near

the percolation threshold fc, the dc conductivity

s�f, 0�, f being the volume fraction of conductor,

follows the power-laws s�f; 0�a�fÿ fc�t as fc

is approached from the conducting side �f4fc�,
with t as the conductivity exponent, and

s�f; 0�a�fc ÿ f�ÿs
, where the exponent s describes

the divergent behavior of the conductivity, when fc

is approached from the insulating side �f5fc�. The

real part of the low frequency dielectric constant

e�f, o & 0� of percolation systems is also

predicted to diverge as e�f�ajfc ÿ fjÿs0
, where s0

is the dielectric exponent, on both sides of fc [5±7].

A s and a s0 are introduced in Wu and McLachlan

[15,16] as they are found to be different from

experiments performed on some Graphite-Boron

Nitride systems. From early results for computer

simulations, model experiments and some continuum

systems, the critical exponents t and s were ®rst

thought to be universal, i.e., they depended only on

the dimension of the percolation system (which

would require s � s0, which is not always observed

[15]) and not on the details of cluster geometry and

inter granular contacts. This is now known not to be

true for some continuum systems [5,6,15].

The complex ac conductivity s�f, o�, or dielectric

constant e�f, o�, for percolation systems are usually

arrived at using a scaling ansatz for the complex ac

conductivity sm�f;o� � smr�f;o� ÿ ioeoemr�f;o�
[5±7]. The same scaling ansatz gives higher order

terms for the dc conductivity. The scaling equations

can be written as

sm�f;o�ascr�fÿ fc�tF��x or io=oc�
and

scr�fc ÿ f�tF��x or io=oc� �5�
where F� and Fÿ are the complex scaling functions

above and below fc and scr is the real component of

the conductivity sc of the more conducting and very

dominant component above fc. x and oc, the critical

or scaling angular frequency, are given by

x � �si=sc�jfÿ fcjÿsÿt

and oc � �sc=�eoet��jfÿ fcjt�s

�! s�f; 0��t�s�=t� �6�
Note oc is only de®ned for a conducting phase where

sci � 0 and where sii � ioe0er and sir � 0. Using

Eqs. (5) and (6), sm and smr can be written as [5±7],

smr�f� � A
0
�sc�fÿ f�t � B

0
�scr�fÿ fc�ÿs

and

B
0
ÿsir�fc ÿ f�ÿs � C

0
ÿ�s2

ir=scr��fc ÿ f�ÿ2sÿti : �7a�
sm�f;o� � A���fÿ fc�t � B��o�fÿ fc�ÿs

and

B�ÿo�fc ÿ f�ÿs � C�ÿo
2�fc ÿ f�ÿ2sÿt �7b�

for f above and below fc respectively. (Note in the

percolation equations one is using sc and si while in

the effective media equation sh and sl were used.)

The ®rst term in Eq. (7a) is the well known equation

for the dc conductivity and the Bÿo�fc ÿ f�ÿs
term

gives emra�fc ÿ f�ÿs
, the dielectric divergence equa-

tion. Note the imaginary parts of sc and er of the

conducting and insulating components respectively,
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have been assumed to be zero in the expression for Eq.

(6), therefore for the conducting component sc � scr,

and for the insulating component eii � 0 and

sii � ÿ ioeoerr . At high frequencies for samples with

f close to fc and �o=oc�41, in the RC model [5], Eq.

(5) reduces to [5]±[7],

smr�f;o�! �o=oc�u

and

emr�f;o�! �o=oc�ÿv �8�
u � t=�s� t� and v � s=�s� t� �9a�

u and v are two critical exponents which satisfy the

following scaling relation [5±7]

u� v � 1 �9b�
independent of the model used to derive u and v. The

region where x or o=oc41 and Eq. (8) is obeyed is

called the crossover region. Note Eqs. (7) and (8) have

arbitrary constants and only give the jfÿ fcj and o
dependence for x, or o=oc51 and x;o=oc41, which

severely limits their applicability.

The following expressions can be used to obtain

phenomenological analytical curves for F� and Fÿ:

F��x� or o=oc�� � sGM=sc��fÿ fc�=�1ÿ fc��t

and

Fÿ�xÿ or o=ocÿ� � sGM=sc��fc ÿ f�=fc�t �10�
where sGM is given by [15±18],

�1ÿ f��si
1=s ÿ sGM

1=s�=�si
1=s � AsGM

1=s��

f�sc
1=t ÿ sGM

1=t�=�sc
1=t � AsGM

1=t� � 0 �11�
and A � �1ÿ fc�=fc. si, sc and sm can, and hence

F� and Fÿ as well as x�, xÿ, oc� and ocÿ, be real or

complex. The normalizations in �fÿ fc�=�1ÿ fc�
and �fc ÿ f�=fc, differ from those in Eq. 5, but

enable curves for F� and Fÿ that are independent of

fc to be obtained. If ioe0er is substituted for si in

x� � �si=sc���fÿ fc�=�1ÿ fc��s�t � o=oc� and

xÿ � �si=sc���fc ÿ f�=fc�s�t � o=ocÿ, this gives

o=oc� � �oe0er=sc���1ÿ fc�=�fÿ fc��t�s

and

o=ocÿ � �oe0er=sc��fc=�fc ÿ f��;t�s �12�

which de®ne oc� and ocÿ for an ideal conductor and

an ideal insulator or loss free dielectric. It can be

shown [17,18] that the limiting values of the ®rst order

terms of F� and Fÿ against x�, xÿ, o=oc� and o=ocÿ
are,

F��x���and F��ÿ io=oc��� � 1

�for x� or o=o�51� (13a)

Fÿ�xÿ��and Fÿ�ÿ io=oc�� � xÿ�o=ocÿ�
�for xÿ or o=oc51� (13b)

F��x���and F��ÿio=oc���! x�
t=�s�t�

��o=oc��t=�s�t�� �for x� or o=oc�41� (13c)

Fÿ�xÿ��and Fÿ�ÿ io=oc��! xÿ
t=�s�t�

��o=ocÿ�t=�s�t� �for xÿ or o=ocÿ41� (13d)

All the ®rst order terms of the above limiting

expressions, derived analytically [17] and shown

numerically [16±18], are the same as for the scaling

functions de®ned [5±7]. For x��o=o��41 and

xÿ�o=oÿ�41 there is agreement between

Eqs. (13c) and (13d) and the equations given [5±7]

for the second order terms. The second order terms of

the function F� and Fÿ �or smi�f4fc� and

smr�f5fc�� differ from those in Eqs. (7a) and (7b)

when x��o=oc��51 and xÿ�o=ocÿ�51. These

differences are shown analytically in McLachlan et

al. [17], where measurements of smr�f5fc�, which

strongly favor Eqs. (10) and (11) are also reported.

In order for experimental results, measured as a

function of two independent variables (e.g., fÿ fc

and o), to scale, a function of the two variables must

exist such that the experimental dispersion results for

a series of samples (e.g., different f values) super-

impose, when plotted in terms of this scaling function.

In the speci®c case considered here, if measurements

of sm�f;o� are made and at every measured point

plotted as F� or Fÿ, there are an in®nite number of

other sm�f0;o0� points which give the same value of

F� or Fÿ, provided they have a combination of o0 and

f0 which give the same value of x�, xÿ, o=oc� or

o=ocÿ.

Unfortunately exact solutions to the complex

equations for F��x�� and Fÿ�xÿ� are not available

for arbitrary s and t. However, with the values of s � 1

and t � 2, F��x�� and Fÿ�xÿ� can be calculated from
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a complex cubic equation [17]. Any t/s value equal to

an integer gives a polynomial equation, which can

then be solved analytically [17]. This is done to

provide a qualitative comparison with some of the

data. Note that Eq. (9) can be solved as an implicit

equation for arbitrary s and t if sc and si are real [18].

Reference [18] also shows how the dc conductivity

results, shown in Fig. 5, can be scaled into theoretical

scaling curves derived using Eqs. (10) and (11).

The exponents s and t were ®rst thought to be

universal [5±7] and to depend only on the dimension

(1d, 2d, 3d) of the system, with 3d values of

s � 0:87± 0:89 and t � 2:0. (Although in some work

values in the range 1.7 to 2.0 are considered to be

universal.) This is now known not to be the case. For

instance in systems where various conducting powders

were distributed on large insulating grains, a micro-

structure described earlier, values of s in the range

0.35±1.3 and t in the range 1.7±5.8 were observed [19].

The current theories for non universal exponents are

all based on there being a large range or anomalous

distributions of the conductances between the particles

and clusters. There are analytic models for some

speci®c structures and one based on intergranular

(cluster) tunneling. There is also evidence that extreme

shapes, such as rods, of the conducting grains can give

high t values [14]. For further details on non-

universality the reader is referred to the discussions

and references in Bergman and Stroud [5] and Nan [6].

V. Experimental Results and Simulations:
General

If it is at all possible the starting point for an

experimental analysis of an electroceramic system

should be a measurement of the dc sm �smr� as a

function off, on both sides offc. After an examination

of these results, and a comparison with a ®gure similar

to Fig. 2, it should be possible to decide if the system

has a continuous or grain coating matrix (BA curves b

and d or MW-HS curves a and e) or is a percolation

system displaying a curve such as c in Fig. 2.

Continuous matrix systems can, in principle, be ®tted

using the BA, MS-HS equations or the interpolations

and Bricklayer (BL) model as described in McLachlan

et al. [20]. Percolation results should be analyzed using

the two exponent GEM equation for sGM or the ®rst

order percolation equations for sm, on both sides of fc

and with a common fc, to obtain fc, s and t. Examples

of such ®ts are given in Fig.4 �sc=si 44 1� [15] and Fig.

5 �sc=sI41� [21]. (Note that a ®t of results on the

Fig. 4. This ®gure shows a plot of the experimental resistivity results for Graphite±BN composites as a function of the volume fraction.

The theoretical ®t is obtained using the GEM equation (Eq. (11)) with the following parameters: fc � 0:150, ri � 7:2461015 O cm,

rc � 0:13 O cm, s � 1:05 and t � 3:03.

100 McLachlan



conducting side only often gives a number of nearly

equally good fc7t combinations.)

If the high conductivity component goes super-

conducting, fc may, in principle, be determined very

accurately from measurements below Tc. However,

due to electron tunneling the results are not as

straightforward as it might appear. For further

information and results regarding such supercon-

ducting measurements the reader is referred to

McLachlan et al. [21], Eytan et al. [22] and

Shoskany et al. [23].

In ac measurements, such as impedence spectro-

scopy (IS), it is often not the magnitude of smr and smi

(or emr and emi) that provides a clue to the

microstructure but the dispersion shown by both

smr�o� and smi�o�. The dispersion arises from the

properties of the components and/or the microstruc-

ture. The dispersion that occurs in the BA, MW-HS &

BL systems for continuous grain coated matrix, takes

place only at and between the angular frequencies,

�shr=�2pehre0� and s`lr=�2pe`lre0� characterizing the

components, with their relative amplitudes being

Fig. 5. A plot of experimental and theoretical resistivities versus A` volume fraction f at 295 K. The full curve is a plot of the GEM

equation (Eq. 11) and the broken curves are plots of the percolation equations given in Eq. (7a). The parameters used in these plots GEM:

fc � 0:56, s � 2:9 and t � 3:35 and perc. Eqs.: fc � 0:56, s � 3:46 t � 3:46. The daggers indicate the range of experimental points

closest to fc not incorporated in the percolation equation ®t as they are in the crossover region.
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determined by the volume fractions. This places

restrictions on the components upon which and the

temperatures at which such measurements can be

made. As, in practice, the frequencies available in

dielectric spectrometers goes from 10ÿ 3 Hz to 109 Hz

and, taking a typical er � 6, which gives

ere0 � 5:31610ÿ11, this requires the range of resis-

tivities to lie between 36 1010O cm and

36 10ÿ 2O cm. Therefore measurements are often

made at high temperatures in order to decrease the

resistivity of one or both of the components. The lower

resistivity limit means that complete IS measurements

cannot be made satisfactorily, even with conductors

such as carbon and Graphite. Impedance Spectroscopy

is discussed in the next section.

On the other hand percolation systems show

different dispersion relationships for smr�o� and

smi�o� above and below fc �with

x�;o�; xÿ;oÿ51� and in the crossover region

�x�;o�; xÿ;oÿ41� which can, in principle, be used

to determine the percolation parameters of a system,

possibly even for a single sample. As experimenters

have, in the past, been mainly concerned with proving

certain aspects of percolation theory, they have

usually used components with characteristic frequen-

cies outside of the range given in the last paragraph

and certainly well outside the frequency range of their

instrument(s). Recall that Eqs. (6) and (12) for

oc;oc� and ocÿ are for ideal insulators and

conductors and the components used to test these

equations should have scr 44 sci �or oe0ecr� and

sii�oe0eir�44 sir. Dispersion relations for percolation

systems are usually presented as plots of smr and emr

versus the log of o or the frequency.

VI. Experimental Results and Simulations:
Effective Media Systems

As this subject was covered in detail in a recent

publication [20], only a few illustrative ®gures and

salient points will be given in this section, which is

primarily concerned with impedance spectra, which

are routinely used to characterize the inhomoge-

neous microstructure from the electrical transport

properties of ``composite'' electroceramics. The

simplest spectra to understand are for two compo-

nent or phase systems where the one component

coats the other. The one component should have a

signi®cantly lower or higher conductivity than the

other. The coating component could be grain

boundaries, with a very small volume fraction, or a

true second phase distributed uniformly, at the

interfaces of the granular component, with a

continuous 3D connectivity and a volume fraction

that can range from very small to nearly one. The

MW-HS, BA and other [20] equations should be

able to be used to model and perhaps even ®t results

in both these cases.

In order to demonstrate that the above equations do

produce the type of impedance spectra that are

observed in practice, a few computer simulations are

given here and more in McLachlan et al. [20].

Impedance spectra are usually plotted giving the

imaginary component as a function of the real

component of the impedance and sometimes the

modulus, but very rarely as the admittance or

capacitance. Therefore, in this paper the complex

conductivity s�m, as obtained from the above equations

as a function of o for ®xed f, was converted to the

impedance �Z� or modulus �M� using the following

equations,

Zmr � GF�smr=�smr
2 � smi

2��
and Mmr � oZmr �14�

Zmi � GF�smi=�smr
2 � smi

2��
and Mmi � oZmi:

GF is a geometric factor used to convert from

conductivity to conductance etc. In this paper GF is

chosen so that the impedance or modulus given are for

a one centimeter cube of material.

The simulations plotted in the ®gures are for a two

component system, where the more conducting

component has scr � 3610ÿ5�Oÿ m�ÿ1
, e0ecr �

3610ÿ11 (Farad/m) or sci � 3610ÿ11o and a

characteristic oc of 16106 and the more insulating

one has sir � 3610ÿ8�Oÿ m�ÿ1
and e0er �

3610ÿ11 (Farad/m) or sii � 3610ÿ11o and a

characteristic oi of 16103. In order to generate

these plots o was allowed to vary between 1 and 109 .

These conductivity parameters, with a single relaxa-

tion time, lead to semi-circular arcs. If the conductivity

equations [24,25] that give depressed arcs had been

used for the two components, then depressed arcs

would be observed in all the simulations given below.

Single relaxation time components are used here and

in McLachlan et al. [20] in order to see if any arc

102 McLachlan



distortions arise, due to the microstructures that form

the basis of the above equations.

Systems in which the matrix or coating phase is

insulating often give double arcs, one for each

component. Figure 6 shows impedance plots for a

conducting grain volume fraction of 0.99, which

clearly illustrates the double arcs obtained from the

MS-HS and BA equations (Eqs. (2) and (3)), with the

exponent of certain o values indicated. The width of

the low frequency arc indicates the impedance due to

the insulating phase and the high frequency arc the

conducting phase. Naturally as f decreases the width

of the low frequency arc increases until the high

frequency arc becomes unobservable. For comparison

Fig. 6. The imaginary impedance �Zmi� plotted against the real impedance �Zmr� using the MW (Ð), and BA (- - - -) equations, with

f � 0:99. The conducting component has s � 3610ÿ5 �O7m�ÿ1
and eoer � 3610ÿ11 (Farad/m) and the insulating component

s � 3610ÿ8 �O7m�ÿ1
and eoer � 3610ÿ11 (Farad/m). The exponent of o is given at certain key points on the plots.

Fig. 7. The imaginary modulus �Mmi� plotted against the real modulus �Mmr� using the MW (Ð), and BA (- - - -) equations, with

f � 0:20. The conducting component has s � 36 10ÿ5 �O7m�ÿ1
and eoer � 3610ÿ11 (Farad/m) and the insulating component

s � 3610ÿ8 �O7m�ÿ1
and eoer � 3610ÿ11 (Farad/m). The exponent of o is given at certain key points on the plots.
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purposes, the Bruggeman Asymmetric model has been

shifted away from the origin in Fig. 6. The shifted BA

arc has a very similar high conductivity arc and a very

small low conductivity arc. This suggests that in this

BA microstructure the in®nite size range of con-

ducting spheres must lie much closer to each other than

in the MW microstructure and that they effectively

short-out the insulating medium. This would appear to

be consistent with the microstructures shown in Fig. 1.

The high conductivity arcs for the MW and BA

media are similar. This is because the current

maximizes its path in this component so as to obtain

the required minimum resistance for or power

dissipation in the two phase composite. The very

different arcs characterizing the low conductivity

component in the MW and BA media show that the

size of the low conductivity component arc depends

critically on microstructure, even in media where the

low conductivity component obviously coats the high

conductivity component and forms a continuous

matrix component.

Fig. 7 shows plots of real modulus �Mmr� against

imaginary modulus �Mmi� (Eq. (14)), for a conducting

volume fraction of 0.2. Note that for this value of f,

an impedance plot �Zmi vs. Zmr� does not give

separated arcs and that it is important to examine

both impedance and modulus plots.

In the case where conductor coats the more

insulating spheres (i.e., a conductor matrix system)

only single arcs are observed for all f values. It is

observed [20] that the peak o of the semi-circular arcs

characterizing these conductor matrix media moves

from 103 to 106 as f goes from nearly zero to one. The

single arc means that the separate contributions of the

two components to the impedance or modulus cannot

differentiated by means of IS plots.

VII. Experimental and Simulations: Percolation
Systems

The system chosen to illustrate dispersion in percola-

tion systems is a lightly poured powder consisting of

55% Graphite: 45% Boron Nitride and air under going

a stepped compression [16]. Examples of other

systems which display similar behavior are given in

Wu and McLachlan [16] and Chiteme and McLachlan

[19] and the references in Wu and McLachlan [16].

Fig. 8. A plot of the conductivity smr�f;o� against frequency for a 55% G:45% BN powder in air, on a log:±log scale, for various of f.

f � 0:133 (diamond), 0.129 (star), 0.127 (6 in box), 0.125 (plus in box), 0.123 (plus), 0.121 (triangle), 0.120 (dark square), 0.118 (dark

circle), 0.116 (inverted triangle), 0.115 (open square), 0.112 (open circle). Note that fc � 0:124.
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The results from the dc conductivity and low

frequency ac dielectric measurements as a function of

f experiments, on both sides of fc, have been given in

Fig. 4 and Wu and McLachlan [15]. The values of s, t
and fc obtained from these measurements were used

to calculate the F� and Fÿ plots given below, which

are therefore independent of the dispersion measure-

ments reported in this paper.

Figure 8 shows the ac conductivities �smr�f;o��
versus the frequency on a log±log scale, for a

55% G : 45% BN powder in air system. For f � fc,

the conductivities increase approximately linearly

over the entire frequency range. Well above fc, the

conductivity shows no dispersion in the low frequency

range. A ``dc±ac'' crossover or critical frequency oc�
exists, beyond which the conductivity starts to

increase with frequency and eventually, in some

cases for f very close to fc, shows a linear region on a

log±log plot, at higher frequencies. The crossover

frequency oc� increases continuously as �fÿ fc� or

sc increases (Eqs. (6) and (12)). It should be noted

that, at high frequencies, there is very little difference

in the exponent for the power law describing the

dispersion of the insulating and conducting samples

close to the critical volume fraction, as required by

Eqs. (13c) and (13d). The lack of dispersion in the

Fig. 9. A plot of the log of the scaled conductivities smr�f;o�=sm�f; 0� against the log of the scaled frequency �o=oc�� or �o=ocÿ� for a

55% G : 45% BN powder. The origin of the F� and Fÿ plots, onto which the experimental curves are scaled along the �o=oc�� or �o=ocÿ�
axis, are discussed in the text. The parameters used are sc � 3116 �O m�ÿ1

, si � 2:9261011o �O7m�ÿ1
, s � 0:72, t � 4:8 and

fc � 0:124.
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low-frequency range distinguishes a conducting

sample �x�51� from an insulating one �xÿ51� or

one in the cross over region �x�; xÿ41�.
According to the scaling laws, the scaled

experimental results on the conducting side of

percolation �f4fc� depend only on o=oc�.

Figure 9 shows the reduced ac conductivity

s�f;o�=s�f; 0� for f4fc versus the reduced

frequency o=oc�. Here the s�f;o� [16] and

s�f; 0� [15] values used are both the measured

values, but s�f; 0� could have been calculated from

the expression linking F� and sGM in Eq. (10). To

obtain this scaling plot, 1=oc� had to be treated as a

®tting parameter for each sample and empirically

selected so as to make (by ``sliding'' the normalized

results along the log s�f;o�=s�f; 0� � 0 axis) all

the experimental curves lie on the analytic scaling

F� curve, obtained using Eqs. (10)±(12). In the

region o=oc�41, all results obey the power-law

s�f;o�=s�f; 0�! �o=oc�u, with u � 0:82+0:02.

The line through the data is a line obtained using

the dc scaling expression (real) for F��o=oc�:x��
from Eqs. (10)±(12) with sc (conductor) �
3126 �Oÿ m�ÿ1

, si (insulator):o63:36e0 �

o2:92610ÿ11�Oÿ m�;ÿ1 t � 4:8, s � 0:72 and

fc � 0:124, all these values being obtained from

Wu and McLachlan [15]. The dc scaling expression

is identical to the ®rst order term for a complex F�,

where F� can be evaluated for arbitrary s and t.
The variations of the ac axial dielectric constant as

a function of frequency for the samples on insulating

side of fc are shown in Fig. 10. As expected the

dielectric constant increases with decreasing �fc ÿ f�
for all frequencies and the dielectric constant of

samples with f somewhat below the critical volume

fraction remains constant in this frequency range.

Recent experimental measurements [19] show that the

exponent s, when obtained from low frequency ac

susceptibility as a function of f measurements, is a

function of frequency. For ®xed f, the samples closer

to fc show a small negative slope �ÿ v� as expected

from Eq. (8). Figure 11 shows the scaled imaginary

complex ac conductivity results, plotted against

o=ocÿ on a log±log scale. The experimental points

were obtained by ®rst dividing the experimental

smi�f;o� values by the calculated dc conductivity

smr�f; 0� � scr��fc ÿ fc�=fc�t, which links sGM and

Fÿ in Eq. 10, using the sc, fc and t values obtained

Fig. 10. A plot of the real part of the dielectric constant emr�f;o� against frequency for a 55% G : 45% BN powder in air, on a log±log

scale for various values of f. f � 0:123 (plus), 0.121 (open triangle), 0.120 (dark square), 0.118 (open circle), 0.116 (inverted triangle),

0.115 (open square), 0.112 (open circle). Note that fc � 0:124.
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from the dc measurements. The dc Fÿ (real) curves

used here and the ®rst order (imaginary) term of a

complex Fÿ are found to be identical, where a

complex Fÿ can be evaluated. Note that this smr�f; 0�
is not a measured or measurable quantity. These

normalized experimental results were then scaled by

an empirical 1=ocÿ so as to all lie on the

Fÿ�o=ocÿ: xÿ) curve obtained from Eqs. (10)±

(12). Note that, as required by Eqs. (13b) and (13d)

and [5±7], the slope of the ®rst order term of Fÿ is one

for o=ocÿ or xÿ51 and t=�s� t� for o=ocÿ or

xÿ41. Here the parameters used are those given for

the F� curve but with s � 0:60 to get a better

agreement with the slope �t=�s� t�� of the data for

o=oc41. Note that 0.60 is the mean of the dielectric

s � 0:72 and the dc conductivity s � 0:47 [15].

Although these results look very good there are

serious problems. The slopes of the experimentally

determined oc� plotted against the measured and

calculated sm�f; 0� and ocÿ plotted against the

calculated sm�f; 0�, which should give a slope of

�t� s�=t, are all lower than expected and the actual

values of oc� and ocÿ are often orders different from

the calculated ones [16].

The loss, or smr below fc, term is further

investigated in McLachlan et al. [17] using a better

dielectric spectrometer than was available for the

measurements reported in Wu and McLachlan [16].

Fig. 11. A plot of the log of the scaled conductivities smr�f;o�=sm�f; 0� against the log of the scaled frequency (o=oc�� or �o=ocÿ� for

a 55% G : 45% BN powder. The origin of the F� and Fÿ plots onto which the experimental curves are scaled along the �o=oc�� or

�o=ocÿ� axis are discussed in the text. The parameter used are sc � 3116 �Om�ÿ1
, si � 2:9261011o �O7m�ÿ1

, s � 0:60, t � 4:8 and

fc � 0:124.
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The plotted results looked very similar to those shown

in Fig. 8. These results where examined using the two

dielectric loss terms, for f5fc, derived in

McLachlan et al. [17] from Eq. (11), which are the

loss in the dielectric component and the ``percola-

tion'' loss in the graphite clusters. The results at

higher frequencies, after the elimination of the

dielectric (BN) loss, give slopes of 1.05±1.09, which

is somewhat lower than the �1� t�=t��1� 4:8�=4:8�
value of 1.21 expected from the theory using the

measured t value of 4.8 [15] and very different from

the exponent given in Eq. (7b).

Dispersion results in systems with a percolative

microstructure, but done over a frequency range

which includes the characteristic frequency of one or

both of the components, will obviously be very

different from any that have yet appeared or been

understood in the literature. In order to predict or

analyze the results from such a system one needs an

analytic expression such as the GEM or BS equations.

Once one includes the two exponents and an arbitrary

fc in the GEM equation, there are far too many

possibilities to discuss in this paper. Therefore, the BS

equation will be used, with A � 2 (spherical grains) to

obtain an idea of what may be observed in percolation

systems. Added advantage is that the microstructure is

Fig. 12a and b. The imaginary modulus �Mmi� plotted against the real modulus �Mmr� using the BS equation, with f � 0:20 (Ð), 1/3

(ÿÿÿÿ) and 2/3 ( � � � � � � � � � ). In Fig. 12a the conducting component has s � 3610ÿ5 �O7m�ÿ1
and eoer � 3610ÿ11 (Farad/m) and the

insulating component s � 3610ÿ8 �O7m�ÿ1
and eoer � 3610ÿ11 (Farad/m). In Fig. 12b the conducting component has

s � 30 �O7m�ÿ1
and the insulating component s � 3610ÿ14 �O7m�. eoer � 3610ÿ11 (Farad/m) for all components. The exponent of o

is given at certain key points on the plots.
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well de®ned (see Fig. 1), the BS equation is a special

case of the GEM equation �s � t � 1 andf � 1=3�
and that this will complete the discussion on the

effective media theories.

Figure 12(a) shows plots of the imaginary versus

real modulus for the same two components as used in

Figs. 6 and 7. For j � 0:2 the insulating component is

continuous and the conducting component consists of

isolated clusters. This again shows that dual arc

spectra characterize media where the conducting

component is completely surrounded or coated by

the insulating one. For f � 1=3, where the conducting

component ®rst forms a continuous network or in®nite

cluster, a distorted arc, due only to the microstructure,

is observed. For f � 2=3, where the insulating

component becomes discontinuous, the single semi-

circular arcs, which characterize continuous con-

ducting matrices in MW-HS and BA systems are

observed. In the modulus plots in Fig. 12(b), the

conductivity of the conducting component has been

increased by 106 (new characteristic o � 1012) and

the conductivity of the insulating component has been

decreased by 106 (new characteristic o � 10ÿ3�,
which should give rise to percolative dispersion in

the range 15o5109. (To obtain these plots o is

varied from 10ÿ 3 to 1012). The surprising feature,

seen in Figs. 12(a) and 12(b) is that the modulus arcs

are both virtually identical in shape, but with different

scales, and that the o markers have moved. Note that

the characteristic o markers of the very different high

and low conductivity components coincide. Lastly,

Fig. 13 shows the dispersion displayed by the

conductivity in the two cases. In the ®rst case

(dashed line and s � 3610ÿ5 and

3610ÿ8�Oÿ m�ÿ1
), dispersion only occurs between

the characteristic o's of the components, for all f
values. In the second case (solid line and

s � 3610ÿ14 and 30�Oÿ m�ÿ1
) at f � 1=3, the

Fig. 13. This ®gure shows plots of the conductivity against log10 of o. For the dashed lines the conducting component has

s � 3610ÿ5 �O7m�ÿ1
and the insulating component s � 3610ÿ8 �O7m�ÿ1

. For the solid lines the conducting component has

s � 30 �O7m�ÿ1
and the insulating component s � 3610ÿ14 �O7m�ÿ1

. eoer � 3610ÿ11 (Farad/m) for all components.
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system shows percolation type dispersion between

o � 1 and 109, with the properties of the components

only showing up above and below these frequencies.

At f � 2=3 the sample shows a frequency indepen-

dent conductivity, as required by percolation theory

for this highly conducting sample, up until additional

dispersion, due to the conductivity, component itself

sets in at o � 1010. For f � 0:2 the expected slope of

2 (standard percolation theory) or �t� 1�=t � 2

(GEM eq.) is observed only between o � 104 and

108, as the percolation behavior is limited by the

properties of the components outside of this range. As

indicated earlier the results shown in Figs. 12 and 13,

although reasonably logical are by no means

de®nitive and a considerable amount of work, both

theoretical and experimental, remains to be done on

real continuum percolation systems.

VIII. Conclusions

A considerable amount of theoretical and experi-

mental work remains to be done in order to ®nd out to

what extent some or all of the ideas, models and

equations given in this paper can be used in practice.
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